

USER MANUAL

PAT440-10 PAT450-10

www.americancontrolelectronics.com

Dear Valued Consumer:

Congratulations on your purchase of the **PAT Series** drive. This User Manual was created for you to get the most out of your new device and assist with the initial setup. Please visit www.americancontrolelectronics.com to learn more about our other drives.

Thank you for choosing American Control Electronics®!

© 2012 American Control Electronics[®]. All rights reserved.

No part of this manual may be reproduced or transmitted in any form without written permission from American Control Electronics[®]. The information and technical data in this document are subject to change without notice. American Control Electronics[®] and its divisions make no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of its merchantability and fitness for a given purpose. American Control Electronics[®] and its divisions assume no responsibility for any errors that may appear in this manual and make no commitment to update or to keep current the information in this manual.

Safety First!

SAFETY WARNINGS

Text in gray boxes denote important safety tips or warnings. Please read these instructions carefully before performing any of the procedures contained in this manual.

- DO NOT INSTALL, REMOVE, OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qualified electrical technician install, adjust and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA), when installing equipment.
- Reduce the chance of an electrical fire, shock, or explosion by using proper grounding techniques, over-current protection, thermal protection, and enclosure. Follow sound maintenance procedures.

It is possible for a drive to run at full speed as a result of a component failure. AMERICAN CONTROL ELECTRONICS® (ACE) strongly recommends the installation of a master switch in the main power input to stop the drive in an emergency.

Circuit potentials are at 115 VAC or 230 VAC above earth ground. Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use a non-metallic screwdriver for adjusting the calibration trim pots. Use approved personal protection equipment and insulated tools if working on this drive with power applied.

Table of Contents

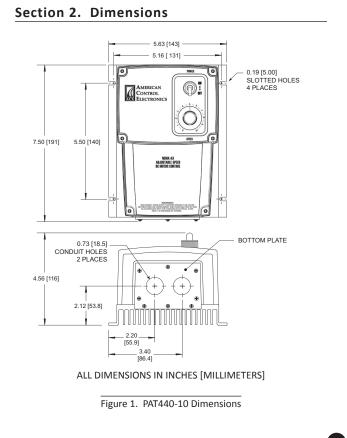
Section 1. Specifications	1
Section 2. Dimensions	3
Section 3. Installation	5
Mounting	5
Wiring	
Line Fusing	
Connections	
Section 4. Operation	13
Before Applying Power	
Select Switches	
Input Voltage Select (SW501)	
Armature Voltage Select (SW502) Startup	
PAT440-10	
PAT450-10	
Starting and Stopping Methods	
Line Starting and Stopping	17
Dynamic Braking	
Inhibit Terminals	
Decelerating to Minimum Speed	21
Section 5. Calibration	22
Minimum Speed (MIN SPD)	
Maximum Speed (MAX SPD)	
Torque (TQ LIMIT)	
IR Compensation (IR COMP)	
Acceleration (ACCEL) Deceleration (DECEL)	
Section 6. Application Notes	
Multiple Fixed Speeds	
Adjustable Speeds Using Potentiometers In Series Independent Adjustable Speeds	
RUN/JOG Switch - Inhibit Connection	

.32
.33
.34
.35
.36
37
38
.38
41
42
43
45

List of Tables

Table 1	Recommended Line Fuse Sizes 8
Table 2	Field Output Connections10
Table 3	Minimum Recommended Dynamic Brake Resistor Values 19

List of Figures


Figure 1	PAT440-10 Dimensions	3
Figure 2	PAT450-10 Dimensions	4
Figure 3	Cover Removal for Terminal Strip Access	6
Figure 4	Drive Connections	.11
Figure 5	Analog Input Signal Connections	.12
Figure 6	Select Switches	.14
Figure 7	Dynamic Brake Connection	.19
Figure 8	Inhibit Terminals	.20
Figure 9	Run/Decelerate to Minimum Speed Switch	.21
Figure 10	Recommended TORQUE and IR COMP Settings	.26
Figure 11	Multiple Fixed Speeds	.28
Figure 12	Adjustable Speeds Using Potentiometers in Series	.29
Figure 13	Independent Adjustable Speeds	.30
Figure 14	RUN/JOG Switch - Connection to Inhibit Plug	.31
Figure 15	RUN/JOG Switch - Connection to Speed Adjust	
	Potentiometer	.32
Figure 16	Leader-Follower Application	.33
Figure 17	Single Speed Potentiometer Control of Multiple Drives	.34
Figure 18	Reversing Circuit Connection	.35
Figure 19	Reversing with a CLD100-1	.36
Figure 20	Diagnostic LED Location	.37
Figure 21	PAT Series Block Diagram	.41

Section 1. Specifications

••••••	•••••••		••••••	••••••
	Maximum	HP Range	HP Range	
Model	Armature	with 90 VDC Motor	with 180 VDC Motor	Enclosure
wouer	Current (ADC)	IVIOLOI		Enclosure
PAT440-10 PAT450-10	10	1/8 - 1	1/4 - 2	NEMA 4X NEMA 4X
••••••			••••••	••••••
AC Line Voltage	•••••	••••••		30 VAC ± 10%
Ac Line Voltage				Hz, single phase
•••••		••••••		
DC Armature Volta				
with 115 VAC L	5			0 - 90 VDC
with 230 VAC L	ine voltage			0 - 180 VDC
Field Voltage				
with 115 VAC Line Voltage			0 VDC (F1 to L1); 10	
with 230 VAC Line Voltage		10	0 VDC (F1 to L1); 20	0 VDC (F1 to F2)
Maximum Field Cu		· · · · · · · · · · · · · · · · · · ·		1 ADC
Acceleration Time			1 - 15 seconds	
Deceleration Time	Deceleration Time Range coast to a stop - 15 second			
Analog Input Volta	ge Range (Signal mu		+ 57)	••••••
	Armature Voltage	ist be isolated, 31	1 (0 32)	0 - 1.4 VDC
	Armature Voltage			0 - 2.8 VDC
Input Impedance (S1 to S2)				
Input Impedance (S1 to S2)				3M ohms
Form Factor	Form Factor 1.37 at base sp		37 at base speed	
Load Regulation	Load Regulation 1% base speed or bett			
Speed Range	Speed Range		60:1	
•••••		••••••		••••••

Section 1. Specifications (continued)

Vibration	1G maximum (0 - 50 Hz)
Safety Certifications	UL/cUL Listed Equipment, File # E132235
Ambient Temperature Range	10°C - 40°C

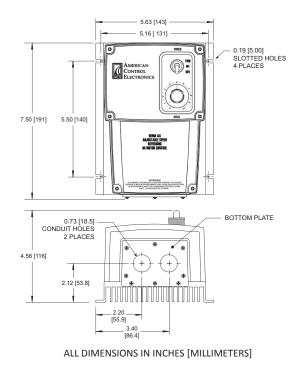


Figure 2. PAT450-10 Dimensions

Section 3. Installlation

Do not install, rewire, or remove this control with input power applied. Failure to heed this warning may result in fire, explosion, or serious injury. Make sure you read and understand the Safety Precautions on page i before attempting to install this product.

Mounting

NEMA 4X cased drives come with two 0.73 inch (18.5 mm) conduit knockout holes at the bottom of the case. The units may be vertically wall mounted using the four 0.19 inch (5 mm) slotted holes on the attached heat sink. For motor loads less than 5 ADC, the drive may be bench mounted horizontally or operated without mounting.

- 1. Install the mounting screws.
- For access to the terminal strip, remove the six phillips screws on the front cover.
- 3. Remove the five phillips screws on the bottom plate. Do not remove the three screws securing the bottom plate to the heat sink.
- Set the POWER switch to the off position before applying applying AC line voltage.
- Install conduit hardware through the 0.73 inch (18.5 mm) knockout holes. Connect external wiring to the terminal block.
- 6. Place the front cover back into place. Avoid pinching any wires between the front cover and the heat sink.
- Reinstall the 6 screws on the front cover. The two shorter screws are for the two lower holes of the front cover. Reinstall the 5 screws on the bottom plate.

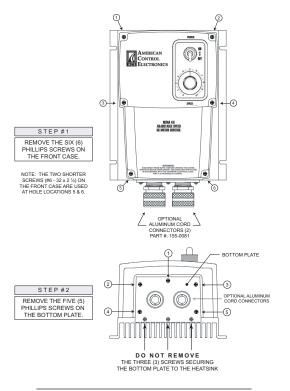


Figure 3. Cover Removal for Terminal Strip Access

Wiring

Do not install, rewire, or remove this control with input power applied. Failure to heed this warning may result in fire, explosion, or serious injury.

Circuit potentials are at 115 or 230 VAC above ground. To prevent the risk of injury or fatality, avoid direct contact with the printed circuit board or with circuit elements.

Do not disconnect any of the motor leads from the drive unless power is removed or the drive is disabled. Opening any one motor lead while the drive is running may destroy the drive.

• Use 18 - 24 AWG wire for logic wiring. Use 14 - 16 AWG wire for AC line and motor wiring.

Line Fusing

Models PAT440-10 and PAT450-10 are preinstalled with 15 amp fuses.

Preinstalled line fuses are rated at or close to maximum horsepower. If the horsepower rating of the motor being used is less than the maximum horsepower rating of the drive, the line fuse may have to be replaced with a lower rated one. Fuses should be rated for 250 VAC or higher and approximately 150% of the maximum armature current. Refer to Table 1 on page 8 for recommended fuse values.

90 VDC	180 VDC	Maximum DC	AC Line
Motor	Motor	Armature Current	Fuse Size
Horsepower	Horsepower	(amps)	(amps)
1/8	1/4	1.5	3
1/6	1/3	1.7	3
1/4	1/2	2.5	5
1/3	3/4	3.5	8
1/2	1	5.0	10
3/4	1 ½	7.5	15
1	2	10	15

Table 1. Recommended Line Fuse Sizes

ACE offers fuse kits. See Section 10: Accessories and Replacement parts on page 42 for fuse kit part numbers.

Connections

Do not connect this equipment with power applied. Failure to heed this warning may result in fire, explosion, or serious injury.

Power Input

Connect the AC line power leads to screw terminals L1 and L2-115 if using a 115 VAC line or to terminals L1 and L2-230 if using a 230 VAC line. Refer to Figure 4, page 11.

Motor

ACE drives supply motor voltage from A1 and A2 terminals, where A1 is positive with respect to A2. If the motor does not spin in the desired direction, remove power and reverse the A1 and A2 connections.

Connect a DC motor to screw terminals A1 and A2 as shown in Figure 4 on page 11. Ensure that the motor voltage rating is consistent with the drive's output voltage.

Field Output Connections

The field output is for shunt wound motors only. Do not make any connections to F1 and F2 when using a permanent magnet motor.

See Table 2 for field output connections. Use 18 AWG wire to connect the field output to a shunt wound motor.

Table 2. Field Output Connections		
Line Voltage (VAC) Approximate Field Connect Motor Voltage (VDC) Field To		
115 50 Terminals F1 and L1		
115 100 Terminals F1 and F2	?	
230 100 Terminals F1 and L1		
230 200 Terminals F1 and F2	?	

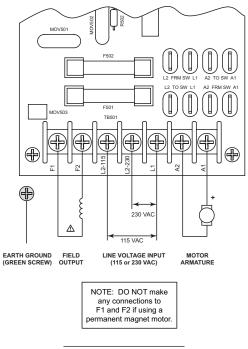


Figure 4. Drive Connections

Analog Input Signal

Instead of using a speed adjust potentiometer, the drive may be wired to follow an analog input voltage signal that is isolated from earth ground (Figure 5). Connect the signal common (–) to S1. Connect the signal input (+) to S2. Make no connection to S3. A potentiometer can be used to scale the analog input voltage. An interface device, such as ACE model ISO202-1, may be used to scale and isolate an analog input voltage.

With 115 VAC line voltage, an analog input voltage range of 0-1.4 VDC is required to produce an armature voltage range of 0-90 VDC. With 230 VAC line voltage, an analog input voltage range of 0-2.8 VDC is required to produce an armature voltage range of 0-180 VDC.

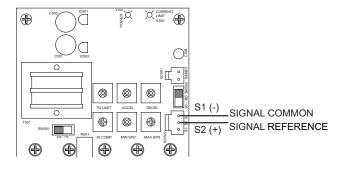


Figure 5. Analog Input Signal Connections

Section 4. Operation

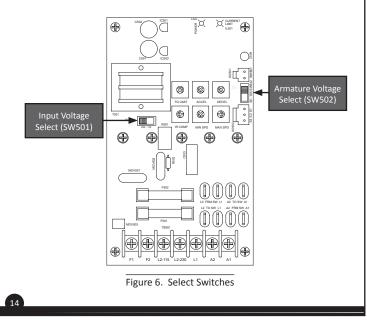
Change voltage switch settings only when the drive is disconnected from AC line voltage. Make sure both switches are set to their correct position. If the switches are improperly set to a lower voltage position, the motor will not run at full voltage and may cause damage to the transformer. If the switches are improperly set to a higher voltage position, the motor will overspeed, which may cause motor damage, or result in bodily injury or loss of life.

Dangerous voltages exist on the drive when it is powered. BE ALERT. High voltages can cause serious or fatal injury. For your safety, use personal protective equipment (PPE) when operating this drive.

If the motor or drive does not perform as described, disconnect the AC line voltage immediately. Refer to the Troubleshooting section, page 38, for further assistance.

Before Applying Power

- Verify that no foreign conductive material is present on the printed circuit board.
- 2. Ensure that all switches are properly set.


Select Switches

Input Voltage Select (SW501)

Set the input voltage select switch SW501 to either 115 or 230 to match the AC line voltage. See Figure 6.

Armature Voltage Select (SW502)

Set the armature voltage select switch SW502 to either 90 or 180 to match the maximum armature voltage. See Figure 6.

Startup

PAT440-10

- 1. Turn the speed adjust potentiometer full counterclockwise (CCW) or set the input voltage signal to minimum.
- 2. Set the POWER switch to the ON position.
- Slowly advance the speed adjust potentiometer clockwise (CW) or increase the input voltage signal. The motor slowly accelerates as the potentiometer is turned CW or as the input voltage signal is increased. Continue until the desired speed is reached.
- 4. Set the POWER switch to the OFF position to coast the motor to a stop.

PAT450-10

The motor must come to a complete stop before reversing. Changing motor direction before allowing the motor to completely stop will cause excessively high current to flow in the armature circuit, and will damage the drive and/or motor.

- 1. Set the POWER switch to the OFF position.
- Set the speed adjust potentiometer to "0" (full CCW) or set the input voltage signal to minimum.
- 3. Set the POWER switch to either FWD or REV.
- 4. Slowly advance the speed adjust potentiometer clockwise (CW) or increase the input voltage signal. The motor slowly accelerates as the potentiometer is turned CW or as the input voltage signal is increased. Continue until the desired speed is reached.
- 5. To reverse direction:
 - a. Set the POWER switch to the OFF position.
 - b. Wait for the motor to come to a complete stop.
 - c. Set the POWER switch to the desired direction.
- 6. Set the POWER switch to the OFF position to coast the motor to a stop.

Starting and Stopping Methods

Dynamic braking, coasting to a stop, or decelerating to minimum speed is recommended for frequent starts and stops. Do not use any of these methods for emergency stopping. They may not stop a drive that is malfunctioning. Removing AC line power (both lines) is the only acceptable method for emergency stopping.

Frequent starting and stopping can produce high torque. This may cause damage to motors, especially gearmotors that are not properly sized for the application.

Automatic Restart Upon Power Restoration

All drives automatically run to set speed when power is applied and the inhibit is not active.

Line Starting and Stopping

Line starting and stopping (applying and removing AC line voltage) is recommended for infrequent starting and stopping of a drive only. When AC line voltage is applied to the drive, the motor accelerates to the speed set by the speed adjust potentiometer or voltage reference signal. When AC line voltage is removed, the motor coasts to a stop.

Dynamic Braking

Wait for the motor to completely stop before switching back to RUN. This will prevent high armature currents from damaging the motor or drive.

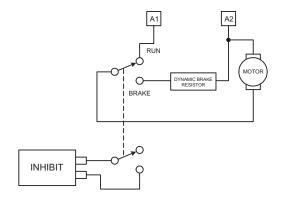
Dynamic braking may be used to rapidly stop a motor (Figure 7, page 19). For the RUN/BRAKE switch, use a two pole, two position switch rated for at least the armature voltage rating and 150% the armature current rating. For the dynamic brake resistor, use a 40 watt minimum, high power, wirewound resistor.

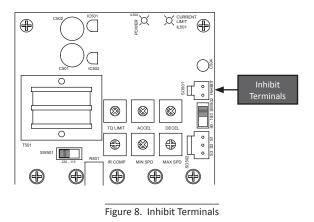
Sizing the dynamic brake resistor depends on load inertia, motor voltage, and braking time. Use a lower-value, higher-wattage dynamic brake resistor to stop a motor more rapidly. Refer to Table 3 (page 19) for recommended dynamic brake resistor sizes.

Table 3. Minimum Recommended Dynamic Brake Resistor Values

Motor Armature Voltage	Dynamic Brake Resistor Value
90 VDC	15 ohms
180 VDC	30 ohms
100 7 2 0	

For motors rated 1/17 horsepower and lower, a brake resistor is not necessary since the armature resistance is high enough to stop the motor without demagnetization. Replace the dynamic brake with 12-gauge wire.




Figure 7. Dynamic Brake Connection

Inhibit Terminals

Short the INHIBIT terminals to coast the motor to minimum speed (see Figure 8 for INHIBIT terminal location). Open the INHIBIT terminals to accelerate the motor to set speed.

Twist inhibit wires and separate them from power-carrying wires or sources of electrical noise. Use shielded cable if the inhibit wires are longer than 18 inches (46 cm). If shielded cable is used, ground only one end of the shield to earth ground. Do not ground both ends of the shield.

ACE offers two accessory plug harnesses for connecting to the INHIBIT terminals: part number KTW-0001 [plug with 18 in. (46 cm) leads]; and part number KTW-0002 [plug with 36 in. (91 cm) leads].

Decelerating to Minimum Speed

The switch shown in Figure 9 may be used to decelerate a motor to a minimum speed. Closing the switch between S1 and S2 decelerates the motor from set speed to a minimum speed determined by the MIN SPD trim pot setting. If the MIN SPD trim pot is set full CCW, the motor decelerates to zero speed when the switch between S1 and S2 is closed. The DECEL trim pot setting determines the rate at which the drive decelerates. By opening the switch, the motor accelerates to set speed at a rate determined by the ACCEL trim pot setting.

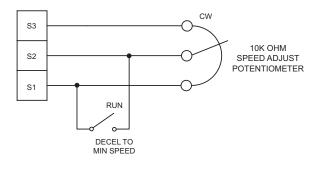


Figure 9. Run/Decelerate to Minimum Speed Switch

Section 5. Calibration

Dangerous voltages exist on the drive when it is powered. When possible, disconnect the voltage input from the drive before adjusting the trim pots. If the trim pots must be adjusted with power applied, use insulated tools and the appropriate personal protection equipment. **BE ALERT.** High voltages can cause serious or fatal injury.

PAT series drives have user-adjustable trim pots. Each drive is factory calibrated to its maximum current rating. Readjust the calibration trim pot settings to accommodate lower current rated motors.

All adjustments increase with CW rotation, and decrease with CCW rotation. Use a non-metallic screwdriver for calibration. Each trim pot is identified on the printed circuit board.

Minimum Speed (MIN SPD)

The MIN SPD setting determines the minimum motor speed when the speed adjust potentiometer or input voltage signal is set for minimum speed. It is factory set for zero speed.

To calibrate the MIN SPD:

- 1. Set the MIN SPD trim pot full CCW.
- Set the speed adjust potentiometer or input voltage signal for minimum speed.
- Adjust MIN SPD until the desired minimum speed is reached or is just at the threshold of rotation.

Maximum Speed (MAX SPD)

The MAX SPD setting determines the maximum motor speed when the speed adjust potentiometer or input voltage signal is set for maximum speed.

To calibrate MAX SPD:

- 1. Set the MAX SPD trim pot full CCW.
- Set the speed adjust potentiometer or input voltage signal for maximum speed.
- 3. Adjust MAX SPD until the desired maximum speed is reached.

Note: Check the MIN SPD and MAX SPD adjustments after recalibrating to verify that the motor runs at the desired minimum and maximum speed.

Torque (TQ LIMIT)

TQ LIMIT should be set to 150% of motor nameplate current rating. Continuous operation beyond this rating may damage the motor. If you intend to operate beyond the rating, contact your ACE representative for assistance.

The TQ LIMIT setting determines the maximum torque for accelerating and driving the motor. To calibrate TQ LIMIT, refer to the recommended TQ LIMIT settings in Figure 10 (page 26) or use the following procedure:

- 1. With the power disconnected from the drive, connect a DC ammeter in series with the armature.
- 2. Set the TQ LIMIT trim pot to minimum (full CCW).
- 3. Set the speed adjust potentiometer or input voltage signal to maximum speed.
- 4. Carefully lock the motor armature. Be sure that the motor is firmly mounted.
- 5. Apply line power. The motor should be stopped.
- 6. Slowly adjust the TQ LIMIT trim pot CW until the armature current is 150% of motor rated armature current.
- Turn the speed adjust potentiometer CCW or decrease the input voltage signal.
- 8. Remove line power.
- 9. Remove the stall from the motor.
- 10. Remove the ammeter in series with the motor armature if it is no longer needed.

IR Compensation (IR COMP)

The IR COMP setting determines the degree to which motor speed is held constant as the motor load changes.

Use the following procedure to recalibrate the IR COMP setting:

- 1. Set the IR COMP trim pot to minimum (full CCW).
- Increase the speed adjust potentiometer or input voltage signal until the motor runs at midspeed without load (for example, 900 RPM for an 1800 RPM motor). A handheld tachometer may be used to measure motor speed.
- 3. Load the motor armature to its full load armature current rating. The motor should slow down.
- 4. While keeping the load on the motor, rotate the IR COMP trim pot until the motor runs at the speed measured in step 2. If the motor oscillates (overcompensation), the IR COMP trim pot may be set too high (CW). Turn the IR COMP trim pot CCW to stabilize the motor.
- 5. Unload the motor.

See Figure 10 on page 26 for recommended IR COMP settings.

MODELS PAT440-10, PAT450-10

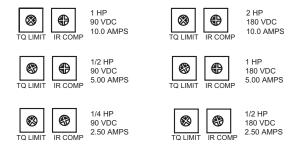


Figure 10. Recommended TQ LIMIT and IR COMP Settings (actual settings may vary with each application)

Acceleration (ACCEL)

The ACCEL setting determines the time the motor takes to ramp to a higher speed. See Specifications on page 1 for approximate acceleration times. ACCEL is factory set for the shortest acceleration time (full CCW).

To set the acceleration time:

- Set the speed adjust potentiometer or input voltage signal for minimum speed. The motor should run at minimum speed.
- Set the speed adjust potentiometer or input voltage signal for maximum speed. Measure the time it takes the motor to go from minimum to maximum speed.
- 3. If the time measured in step 2 is not the desired acceleration time, turn the ACCEL trim pot CW for a longer acceleration time or CCW for a shorter acceleration time. Repeat steps 1 through 2 until the acceleration time is correct.

Deceleration (DECEL)

The DECEL setting determines the time the motor takes to ramp to a lower speed. See Specifications on page 1 for approximate deceleration times. DECEL is factory set for the shortest deceleration time (full CCW).

To set the deceleration time:

- 1. Set the speed adjust potentiometer or input voltage signal for maximum speed. The motor should run at maximum speed.
- Set the speed adjust potentiometer or input voltage signal for minimum speed. Measure the time it takes the motor to go from maximum to minimum speed.
- If the time measured in step 2 is not the desired deceleration time, turn the DECEL trim pot CW for a longer deceleration time or CCW for a shorter deceleration time. Repeat steps 1 through 2 until the deceleration time is correct.

Section 6. Application Notes

Multiple Fixed Speeds

Replace the speed adjust potentiometer with a series of resistors with a total series resistance of 10K ohms (Figure 11). Add a single pole, multiposition switch with the correct number of positions for the desired number of fixed speeds.

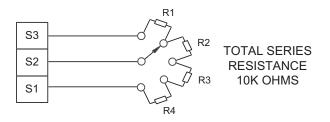
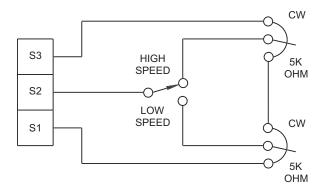



Figure 11. Multiple Fixed Speeds

Adjustable Speeds Using Potentiometers In Series

Replace the speed adjust potentiometer with a series of potentiometers with a total series resistance of 10K ohms (Figure 12). Add a single pole, multi-position switch with the correct number of positions for the desired number of fixed speeds.

Independent Adjustable Speeds

Replace the speed adjust potentiometer with a single pole, multiposition switch, and two or more potentiometers in parallel, with a total parallel resistance of 10K ohms. Figure 13 shows the connection of two independent speed adjust potentiometers that can be mounted at two separate operating stations.

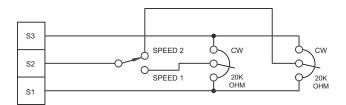
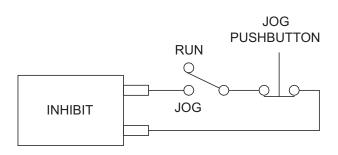



Figure 13. Independent Adjustable Speeds

RUN/JOG Switch - Inhibit Connection

Using a RUN/JOG switch is recommended in applications where quick stopping is not needed and frequent jogging is required. Use a single pole, two position switch for the RUN/JOG switch, and a normally closed momentary pushbutton for the JOG pushbutton.

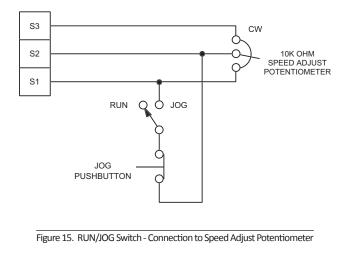
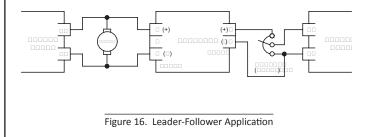

Connect the RUN/JOG switch and JOG pushbutton to the inhibit plug as shown in Figure 14. The motor coasts to a stop when the RUN/JOG switch is set to JOG. Press the JOG pushbutton to jog the motor. Return the RUN/JOG switch to RUN for normal operation.

Figure 14. RUN/JOG Switch - Connection to Inhibit Plug


RUN/JOG Switch - Potentiometer Connection

Connect the RUN/JOG switch and the JOG pushbutton as shown in Figure 15. When the RUN/JOG switch is set to JOG, the motor decelerates to minimum speed (minimum speed is determined by the MIN SPD trim pot setting). Press the JOG pushbutton to jog the motor. Return the RUN/JOG switch to RUN for normal operation.

Leader-Follower Application

In this application, use a ISO202-1 to monitor the speed of the leader motor (Figure 16). The ISO101-1 isolates the leader motor from the follower drive, and outputs a voltage proportional to the leader motor armature voltage. The follower drive uses this voltage reference to set the speed of the follower motor. An optional ratio potentiometer may be used to scale the ISO202-1 output voltage.

Single Speed Potentiometer Control Of Multiple Drives

Multiple drives can be controlled with a single speed adjust potentiometer using a ISO101-8 at the input of each drive to provide isolation (Figure 17). Optional ratio potentiometers can be used to scale the ISO101-8 output voltage, allowing independent control of each drive.

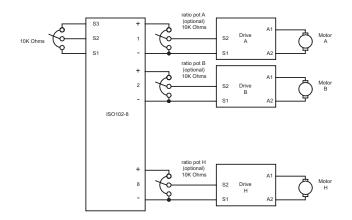


Figure 17. Single Speed Potentiometer Control of Multiple Drives

Reversing

A dynamic brake may be used when reversing the motor direction (Figure 18). Use a three pole, three position switch rated for at least the maximum DC armature voltage and maximum braking current. Wait for the motor to stop completely before switching it to either the forward or reverse direction. See the Dynamic Braking section on page 19 for recommended dynamic brake resistor sizes.

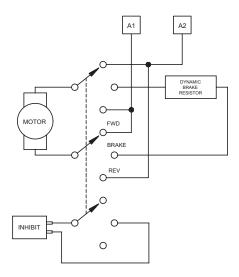


Figure 18. Reversing Circuit Connection

Reversing with a CLD100-1 Controller

A CLD100-1 controller can be used in a reversing application. The CLD100-1 must be inhibited while braking. If the inhibit feature is not used, the CLD100-1 will continue to regulate. This will cause overshoot when the motor is reconnected to the drive. Figure 19 shows a wiring diagram of the reversing circuit using a PAT series drive and a CLD100-1.

Note: Only one feedback device (Optical Encoder or Magnetic Pickup) may be connected to a CLD100-1 at a time.

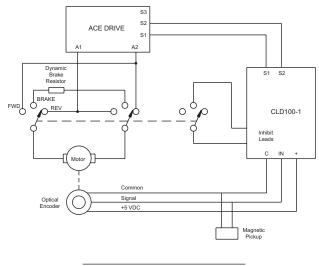


Figure 19. Reversing with a CLD100-1

Section 7. Diagnostic LEDs

PAT series drives are equipped with two diagnostic LEDs:

- Current Limit (CURRENT LIMIT): Red LED lights whenever the drive reaches current limit.
- Power (POWER): Green LED lights whenever AC line voltage is applied to the drive.

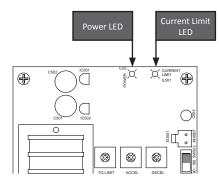


Figure 20. Diagnostic LED Location

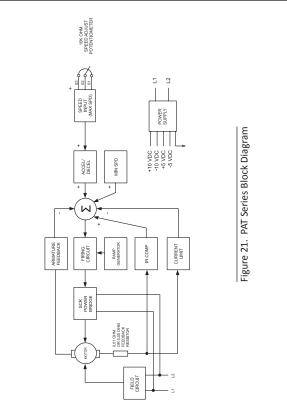
Section 8. Troubleshooting

Dangerous voltages exist on the drive when it is powered. When possible, disconnect the drive while troubleshooting. High voltages can cause serious or fatal injury.

Before Troubleshooting

Perform the following steps before starting any procedure in this section:

- 1. Disconnect AC line voltage from the drive.
- 2. Check the drive closely for damaged components.
- Check that no conductive or other foreign material has become lodged on the printed circuit board.
- 4. Verify that every connection is correct and in good condition.
- Verify that there are no short circuits or grounded connections.
- 6. Check that the switch settings are correctly set.
- Check that the drive's rated armature and field outputs are consistent with the motor ratings.


For additional assistance, contact your local AMERICAN CONTROL ELECTRONICS distributor, or the factory direct:

1-815-624-6915 or FAX: 1-815-624-6965

PROBLEM	POSSIBLE CAUSE	SUGGESTED SOLUTIONS
Line fuse blows.	1. Line fuse is the wrong size.	1. Check that the line fuse is correct for the motor size.
	 Motor cable or armature is shorted to ground. 	 Check motor cable and armature shorts.
	 Nuisance tripping caused by a combination of ambient conditions and high-current spikes (i.e. reversing). 	 Add a blower to cool the drive components, decrease TQ LIMIT settings, resize motor and drive for actual load demand, or check for incorrectly aligned mechanical components or "jams". See page 24 for information on adjusting the TQ LIMIT trim pot.
Line fuse does not blow, but the motor does not run.	 Speed adjust potentiometer or input voltage signal is set to zero speed. 	 Increase the speed adjust potentiometer setting or input voltage signal.
	2. INHIBIT mode is active.	 Remove the short from the INHIBIT terminals.
	3. S2 is shorted to S1.	3. Remove the short.
	4. Drive is in current limit.	 Verify that the motor is not jammed. Increase TQ LIMIT setting if set too low. See page 24.
	 Drive is not receiving AC line voltage. 	5. Apply AC line voltage.
	6. Motor is not connected.	 Remove power. Connect the motor to A1 and A2. Reapply power.

PROBLEM	POSSIBLE CAUSE	SUGGESTED SOLUTIONS
Motor does not stop when the speed adjust potentiometer is full CCW.	1. MIN SPD is set too high.	1. Calibrate MIN SPD. See page 23.
Motor runs in the opposite direction	 Motor connections to A1 and A2 are reversed. 	1. Remove power. Reverse connections to A1 and A2. Reapply power.
Motor runs too fast.	1. MAX SPD is set too high.	 Calibrate MAX SPD. See page 23.
	 Motor field connections are loose (shunt wound motors only). 	2. Check motor field connections.
Motor will not reach the desired speed.	1. MAX SPD setting is too low.	 Increase MAX SPD setting. See page 23.
	2. IR COMP setting is too low.	 Increase IR COMP setting. See page 25.
	3. TQ LIMIT setting is too low.	 Increase TQ LIMIT setting. See page 24.
	4. Motor is overloaded.	 Check motor load. Resize the motor and drive if necessary.
Motor pulsates or surges under load.	1. IR COMP is set too high.	 Adjust the IR COMP setting slightly CCW until the motor speed stabilizes. See page 25.
	 Motor bouncing in and out of current limit. 	 Make sure motor is not undersized for load; adjust TQ LIMIT trim pot CW. See page 24.

Section 10. Accessories & Replacement Parts

Displays Closed Loop.....CLD100-1 Open Loop.....OLD100-1 Kits Potentiometer 10K Pot, Insulating Washer.....KTP-0001 Fuse 2 1.5 Amp 250 V 3AG Fast-blow Glass Fuses......KTF-0001 2 3 Amp 250 V 3AG Fast-blow Glass Fuses......KTF-0002 2 5 Amp 250 V 3AG Fast-blow Glass Fuses......KTF-0003 2 8 Amp 250 V 3AG Fast-blow Glass Fuses......KTF-0004 2 10 Amp 250 V 3AB Normal-blow Ceramic Fuses...... KTF-0005 2 15 Amp 250 V 3AB Normal-blow Ceramic Fuses......KTF-0006 Wiring Inhibit Plug (18 in. leads)...... KTW-0001 Inhibit Plug (36 in. leads)...... KTW-0002 Logic Cards **Current Monitoring** 5 Amps.....CMC100-5 15 Amps.....CMC100-15 Isolation Uni-directional, 8 outputs.....ISO101-8 Bi-directional, 1 output.....ISO202-1

Notes

Notes

Unconditional Warranty

A. Warranty

American Control Electronics[®], referred to as "the Corporation" warrants that its products will be free from defects in workmanship and material for twelve (12) months or 3000 hours, whichever comes first, from date of manufacture thereof. Within this warranty period, the Corporation will repair or replace, at its sole discretion, such products that are returned to American Control Electronics, 14300 De La Tour Drive, South Beloit, Illinois 61080 USA.

This warranty applies only to standard catalog products, and does not apply to specials. Any returns of special controls will be evaluated on a case-by-case basis. The Corporation is not responsible for removal, installation, or any other incidental expenses incurred in shipping the product to and from the repair point.

B. Disclaimer

The provisions of Paragraph A are the Corporation's sole obligation and exclude all other warranties of merchantability for use, expressed or implied. The Corporation further disclaims any responsibility whatsoever to the customer or to any other person for injury to the person or damage or loss of property of value caused by any product that has been subject to misuse, negligence, or accident, or misapplied or modified by unauthorized persons or improperly installed.

C. Limitations of Liability

In the event of any claim for breach of any of the Corporation's obligations, whether expressed or implied, and particularly of any other claim or breach of warranty contained in Paragraph A, or of any other warranties, expressed or implied, or claim of liability that might, despite Paragraph B, be decided against the Corporation by lawful authority, the Corporation shall under no circumstances be liable for any consequential damages, losses, or expenses arising in connection with the use of, or inability to use, the Corporation's product for any purpose whatsoever.

An adjustment made under warranty does not void the warranty, nor does it imply an extension of the original 12-month warranty period. Products serviced and/or parts replaced on a no-charge basis during the warranty period carry the unexpired portion of the original warranty only.

If for any reason any of the foregoing provisions shall be ineffective, the Corporation's liability for damages arising out of its manufacture or sale of equipment, or use thereof, whether such liability is based on warranty, contract, negligence, strict liability in tort, or otherwise, shall not in any event exceed the full purchase price of such equipment.

Any action against the Corporation based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment or the use thereof, must be commenced within one year after the cause of such action arises.

www.americancontrolelectronics.com • 14300 DE LA TOUR DRIVE • SOUTH BELOIT, IL 61080 • • (815) 624-6915 • (815) 624-6965 fax •

Document Number - MAN-0005, Rev 0 - March 2012

© 2011 AMERICAN CONTROL ELECTRONICS®