

EZM-4931 96 x 48 DIN 1/8 Incremental Encoder Input Programmable Counter

- 6 digits Process (PV) and 6 digits Set (SV) Value Display
- Operation with 2 Set Value
- Reset , Pause and ChA-ChB Counting Inputs
- Operation with Automatic and Manual Reset
- NPN/PNP input Types
- x1 /x2 /x4 Phase Shifting Property
- Multiplication Coefficient, Division Coefficient and Point Position
- Parametric , Two point (Low Scale - High Scale) and

Multiplication - Division Coefficient Reading Adjustment

- RS-232 Serial Communication with Modbus RTU Protocol
- Input Frequency Max. 200kHz
- Max. Input Frequency Selection

Instruction manual of EZM-4931 Programmable Counter consists of two main sections. Explanation of these sections are below. Also, there are other sections which include order information and technical specifications of the device. All titles and page numbers in instruction manual are in "CONTENTS" section. User can reach to any title with section number.

Installation:

In this section, physical dimensions of the device, panel mounting, electrical wiring, module mounting in the device, physical and electrical installation of the device to the system are explained.

Operation and Parameters:

In this section, user interface of the device, how to access to the parameters, description of parameters are explained.

Also in these sections, there are warnings to prevent serious injury while doing the physical and electrical mounting or using the device.

Explanation of the symbols which are used in these sections are given below.

This symbol is used for safety warnings. User must pay attention to these warnings.

This symbol is used to determine the dangerous situations as a result of an electric shock. User must pay attention to these warnings definitely.

This symbol is used to determine the important notes about functions and usage of the device.
CONTENTS
1.PREFACE. Page 5
1.1 GENERAL SPECIFICATIONS
1.2 ORDERING INFORMATION
1.3 WARRANTY
1.4 MAINTENANCE
2.INSTALLATION Page 7
2.1 GENERAL DESCRIPTION
2.2 DIMENSIONS
2.3 PANEL CUT-OUT
2.4 ENVIRONMENTAL RATINGS
2.5 PANEL MOUNTING
2.6 INSTALLATION FIXING CLAMP
2.7 REMOVING FROM THE PANEL
3.ELECTRICAL WIRINGS Page 12
3.1 TERMINAL LAYOUT AND CONNECTION INSTRUCTION
3.2 ELECTRICAL WIRING DIAGRAM
3.3 VIEW OF DEVICE LABEL
3.4 CONNECTION OF DEVICE SUPPLY VOLTAGE INPUT
3.5 COUNTING INPUT CONNECTION
3.5.1 INCREMENTAL ENCODER \& SWITCH CONNECTION
3.6 RELAY OUTPUT WIRING DIAGRAM
3.7 GALVANIC ISOLATION TEST VALUES OF EZM-4931 PROGRAMMABLECOUNTER
4.DEFINITION OF FRONT PANEL AND ACCESSING TO THE SET PARAMETERS Page 21
4.1 DEFINITION OF FRONT PANEL
4.2 POWER ON OBSERVATION OF EZM - 4931 PROGRAMMABLECOUNTER AND SOFTWARE REVISION ON THE DISPLAY4.3 ADJUSTMENT OF SET VALUE
4.4 RESETTING COUNT VALUE
4.5 ACCESSING TO THE PROGRAM PARAMETERS
5.PROGRAM PARAMETERS Page 28
6.READ INPUT REGISTER COMMAND Page 52
7.FAILURE MESSAGES IN EZM-4931 PROGRAMMABLE COUNTER Page 53
8.SPECIFICATIONS Page 54

Manufacturer's Name : EMKO ELEKTRONIK A.S.
Manufacturer's Address : DOSAB, Karanfil Sk., No:6, 16369 Bursa, TURKEY

The manufacturer hereby declares that the product:

Product Name	: Programmable Counter
Type Number	$:$ EZM-4931
Product Category	$:$ Electrical equipment for measurement, control and
	laboratory use

Conforms to the following directives :
2006 / 95 / EC The Low Voltage Directive
2004 / 108 / EC The Electromagnetic Compatibility Directive
has been designed and manufactured to the following specifications:
EN 61000-6-4:2007 EMC Generic Emission Standard for Industrial Environments
EN 61000-6-2:2005 EMC Generic Immunity Standard for Industrial Environments
EN 61010-1:2001 Safety Requirements for electrical equipment for measurement, control and laboratory use

When and Where Issued

$04^{\text {th }}$ January 2011
Bursa-TURKEY

Authorized Signature

Name : Serpil YAKIN
Position : Quality Manager

1.Preface

EZM Series Programmable Counter can be used in package machines, production and quality control rollers, in cutting and processing machine of glass, plastic, marble, sheet, iron, fabric all measuring and controlling of dimension, count, total count, speed, cycle, productivity, time and can be adapted easily to all mechanical construction and automation system. They can be used in many application with their control outputs, serial communication unit and output modules.

Some application fields which they are used are below:

Application Fields

Measuring Dimension and Control Automation,
In Cutting and Processing machine of glass, plastic, marble, sheet, iron and fabric
Package machines,
Quality Control rollers,
Filling Systems,
Tool Benchs,
1.1 General Specifications

\mathbf{E}	Output-1
00	None
01	Relay Output (5A@250V~Resistive Load)
02	SSR Output (10mA @ 5V $=--)$

FG	Output-2
00	None
01	Relay Output (5A@250V~Resistive Load $)$
02	SSR Output (10mA @ 5V $=--)$

\mathbf{U}	Encoder Supply Voltage
0	$12 \mathrm{~V}=-$
1	$5 \mathrm{~V}=-$

All order information of EZM-4931 Programmable Counter are given on the table at left. User may form appropriate device configuration from information and codes that at the table and convert it to the ordering codes.

Firstly, supply voltage then output modules and other specifications must be determined. Please fill the order code blanks according to your needs.

Please contact us, if your needs are out of the standards.

~Symbol means Vac, =-Symbol means Vdc \approx Symbol means Vac and Vdc

1.3 Warranty

EMKO Elektronik warrants that the equipment delivered is free from defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date. This warranty is in force if duty and responsibilities which are determined in warranty document and instruction manual performs by the customer completely.

1.4 Maintenance

Repairs should only be performed by trained and specialized personnel. Cut power to the device before accessing internal parts.
Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.

Before beginning installation of this product, please read the instruction manual and warnings below carefully.

In package,

- One piece unit
- Two pieces mounting clamps
- One piece instruction manual

A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is your responsibility to ensure that qualified mechanical and electrical technicians install this product.

If there is danger of serious accident resulting from a failure or defect in this unit, power off the system and separate the electrical connection of the device from the system.

The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

Never attempt to disassemble, modify or repair this unit. Tampering with the unit may results in malfunction, electric shock or fire.

Do not use the unit in combustible or explosive gaseous atmospheres.
During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause injury on hands, you must be careful.

Montage of the product on a system must be done with it's fixing clamps. Do not do the montage of the device with inappropriate fixing clamp. Be sure that device will not fall while doing the montage.

It is your responsibility if this equipment is used in a manner not specified in this instruction manual.

2.1 General Description

Mounting Clamp

2.2 Dimensions

$10.5 \pm 1 \mathrm{~mm} / 0.41$ inch $76 \mathrm{~mm} / 2.99$ inch

Operating Conditions

Operating Temperature : 0 to $50^{\circ} \mathrm{C}$

Max. Operating Humidity : 90\% Rh (non-condensing)

Altitude
: Up to 2000m.

2.5 Panel Mounting

During installation into a metal panel, care should be taken to avoid injury from metal burrs which might be present. The equipment can loosen from vibration and become dislodged if installation parts are not properly tightened. These precautions for the safety of the person who does the panel mounting.

The unit is designed for panel mounting.

1-Insert the unit in the panel cutout from the front side.

2- Insert the mounting clamps to the holes that located top and bottom sides of device and screw up the fixing screws until the unit completely immobile within the panel

Montage of the unit to a system must be done with it's own fixing clamps. Do not do the montage of the device with inappropriate fixing clamps. Be sure that device will not fall while doing the montage.

2.7 Removing from the Panel

Before starting to remove the unit from panel, power off the unit and the related system.

1-Loosen the screws.
2-Pull mounting clamps from top and bottom fixing sockets.

3-Pull the unit through the front side of the panel

You must ensure that the device is correctly configured for your application. Incorrect configuration could result in damage to the process being controlled, and/or personal injury. It is your responsibility, as the installer, to ensure that the configuration is correct.
Parameters of the device has factory default values. These parameters must be set according to the system's needs.

Only qualified personnel and technicians should work on this equipment. This equipment contains internal circuits with voltage dangerous to human life. There is severe danger for human life in the case of unauthorized intervention.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

3.1 Terminal Layout and Connection Instructions

Max. 2.5mm / 0.098 inch Wire Size: 14AWG/1mm ${ }^{2}$ Solid /Stranded

> Torque $0,5 \mathrm{Nm}$

Screw driver 0,8 x3mm

Electrical wiring of the device must be the same as 'Electrical Wiring Diagram' below to prevent damage to the process being controlled and personnel injury.

NOTE-1 : Sensor supply voltage:
If Power Supply is 230 V ~ or 115 V ~ , then Sensor supply voltage is $5 \mathrm{~V}=-\mathbf{(\pm 0 5 \%}$) or

If Power Supply is $24 \mathrm{~V} \approx$, then Sensor supply voltage is $(12 \mathrm{~V}=$ or $5 \mathrm{~V} \overline{--}) \pm 05 \%$,
50 mA maximum short circuit protection.

Device Label for 230V ~ Supply Voltage Input and Relay Outputs

(EIIIOP P/N: EZM-4931 (ϵ

Device Label for $\mathbf{2 4 V} \approx$ Supply Voltage Input and Relay Outputs

(EIINO P/N: EZM-4931 C ϵ

Connection of Universal Supply Voltage Input

Supply Voltage 115 V ~, 230 V ~
(-\%15;+\%10) $50 / 60 \mathrm{~Hz}$

Connection of Universal Supply Voltage Input

Supply Voltage
$24 \mathrm{~V} \sim(-\% 15 ;+\% 10) 50 / 60 \mathrm{~Hz}$

Note-1:

There is internal $33 R \Omega$ fusible flameproof resistor in $115 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ and $230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
There is internal $4 R 7 \Omega$ fusible flameproof resistor in $24 \mathrm{~V} \sim(-\% 15 ;+\% 10) 50 / 60 \mathrm{~Hz}$
Note-2 : External fuse is recommended

Make sure that the power supply voltage is the same indicated on the instrument.

Switch on the power supply only after that all the electrical connections have been completed.

Supply voltage range must be determined in order. While installing the unit, supply voltage range must be controlled and appropriate supply voltage must be applied to the unit. Controlling prevents damages in unit and system and possible accidents as a result of incorrect supply voltage.
There is no power supply switch on the device. So a power supply switch must be added to the supply voltage input. In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument.Power supply switch shall be easily accessible by the user.
Power switch must be two poled for seperating phase and neutral. On/Off condition of power switch is very important in electrical connection. On/Off condition of power switch must be signed for preventing the wrong connection.

If an external fuse is used, it must be on phase connection in ~supply input.
3.5.1 Incremental Encoder \& Switch Connection

Pro-05 0 ODOD PNP type operation

NOTE-1 : Reset and Pause inputs have protection time against electrical contact debounce. Protection time can be set with Pro-

2000V ~ (for EZM-4931.1... and EZM-4931.2...)

Galvanic Isolation Test Values For 24 V \approx Power Supply

3.7 Output Connections

3.7.1 Relay-1 Output Connection

Fuses must be selected according to the applications.

3.7.2 SSR Driver-1 Output Connection

Fuses must be selected according to the applications.

Fuses must be selected according to the applications.

3.7.4 SSR Driver-2 Output Connection

Fuses must be selected according to the applications.

4.1 Definition of Front Panel

SET1 and PROG Button: Button:
It used for resetting the value on Actual Value Display. Also It is used for increasing the value which is selected with shifting button.
It is used for accessing to SET1 value and changing this value. Also, if it is pressed for 3 seconds continuously it is used for entering to the programming mode.

SET2 and ENTER Button: It is used for accessing to SET2 value and changing this value. Also it is used for saving all changes and accessing to the parameters.

NOTE-1: Adjusting the device, while the Two Point Reading Adjustment mode
 value $\mathrm{Pr}_{\mathrm{r}}-14$ can be negative. For example ; While most significant digit (6th digit) of lower adjustment value is changed from 0 to 9 with increment button, after 9 , "-" character is shown. If when "-" character is on the most significant digit (6th digit) of Lower adjustment value and Enter button is pressed, adjustment value becomes negative.

```
4.2 Power On Observation of EZM - 4931 Programmable Counter and Software
    Revision on the Display
```

When power is applied to the device, software revision number of the controller is momentarily illuminated on actual value display. Then operation screen is observed.

When power on, view of the screen is shown below:

Software Revision

Operation Screen is shown

If there is an unexpected situation while opening the device, power off the device and inform a qualified personnel.

4.3 Adjustment of SET Value

Changing SET1 value.

When shift button is pressed, 6th digit of SET1 value starts to flash.

Press SET1 button to exit without saving Set value.

When shift button is pressed, 5th digit of SET1 value starts to flash.

When shift button is pressed, 4th digit of SET1 value starts to flash.

SET Screen

SET Screen

Increase the flashing value with increment button.

Save the value as SET1 value by pressing Enter button. 0 ODOD4then SET1 value can not be changed. For details, refer to parameters section.

When RESET button is pressed, Actual Value becomes the Reset-Offset Value.

 Count Value can not be reset. For details, refer to parameters section.

RESET operation can be realized by Reset button or applying signal to the RESET input. These two operations are named MANUAL RESET in parameters section.
At the end of MANUAL RESET operation, Count Value becomes Reset Offset Value Pro- D3.

4.5 Accessing to the Program Parameters

In this section Accessing to the Program parameters process is shown. For details on parameters refer to PROGRAM PARAMETERS section.

When PROG button is pressed for 3 seconds, password screen will be display.

Enter password with shift and increment buttons.

The most significant digit of the parameter (4th digit for this parameter) flashes.

Password Screen

Press Enter button to confirm password.

Input Types and Functions
 -

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Press PROG button to exit from programming section without doing any changes.

Max. Input Frequency

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button.
Press PROG button to exit from programming section without doing any changes.

Pitch

If Pra-10is DODOD:
Two Point Reading Adjustment
Min. Value for dual point adjustment value

Max. Value for dual point adjustment value

If Pra-iDis DOUOD2;
Multiplication - Division Coefficient Reading Adjustment

Multiplication Coefficient

Division Coefficient

Output Functions

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button.
Press PROG button to exit from programming section without doing any changes.

Return to Factory Settings

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button.

Program Password

User can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Continue to press ENTER button for scanning all parameters.

Operation Screen

Input Types and Functions

x1 Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A input when Ch-B is at 0 Downcount on rising edge of Ch-A input when Ch-B is at 1

Encoder is travelling in the Reverse Direction
Encoder is travelling in the Forward Direction

x2 Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A when Ch-B is at 0 Downcount on rising edge of Ch-A when Ch-B is at 1 Upcount on falling edge of Ch-A when Ch-B is at 1 Downcount on falling edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 0

000002
x4 Phase Shifting（for incremental encoders）
Upcount on rising edge of Ch－A when Ch－B is at 0 Downcount on falling edge of Ch－A when Ch－B is at 0 Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 1 Upcount on falling edge of Ch－A when Ch－B is at 1

Downcount on rising edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 0 Upcount on falling edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 0 Upcount on rising edge of Ch－B when Ch－A is at 1
Downcount on falling edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 1

Encoder is travelling in the Reverse Direction

Encoder is travelling in the Forward Direction

II I－I II $\begin{aligned} & \text { Max．Input Frequency } \\ & \text {（Default＝0）MODBUS ADDRESS：40002．}\end{aligned}$
НППП乌П 100 kHz ＜Input Frequency＜200kHz
НППП凸 50 kHz ＜Input Frequency $<100 \mathrm{kHz}$
ㄱㄻワワコ 25 kHz ＜Input Frequency＜ 50 kHz
ㄱㄻワ7 12 kHz ＜Input Frequency＜ 25 kHz
НППППム 0 kHz ＜Input Frequency $<12 \mathrm{kHz}$

Pro－03

Filter time for Reset and Pause Input
（Default＝50）MODBUS ADDRESS：40003．
It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time．
It can be adjusted from DODDD to 0 DOD5 milisecond．

Pro－04
 Counting Direction
 （Default＝0）MODBUS ADDRESS：40004．

$\square \square \square-\square \square \begin{aligned} & \text { Sensor Type Selection } \\ & \text {（Default＝0）MODBUS ADDRESS：40005．}\end{aligned}$

ПППППП NPN type sensor selected

$\square \square \square-\square \square \begin{aligned} & \text { Point Position for Display } \\ & \text {（Default＝0）MODBUS ADDRESS：40006．}\end{aligned}$

¢Пワワワワ	No point	
ППワワワ	Between first and second digits	－5050．
¢ワワワワコ	Between second and third digits	ODOUTO
¢Пワワワコ	Between third and fourth digits	－20．505
¢Пワワワ4	Between fourth and fifth digits	

GKMFRT There is no Reset and Set protection．

ППППT Only RESET button protection is active．Actual value can not be reset by Reset button．
Actual value can be reset only reset input is active．

ЯППП凸ユ SET1 and SET2 can not be changed．
ПППワワ马 Full protection ；Reset protection is active，also SET1 and SET2 can not be changed．

ЯППППム SET1 can not be changed．

$\square-\square-\square \quad$ Reset Input Change
 （Default＝0）MODBUS ADDRESS：40008．

YKKMKN Reset on rising edge of Reset input．

Reset Offset
（ Default $=0$ ）MODBUS ADDRESS：LOW WORD $=40009$ ，HIGH WORD $=40010$.
It can be adjusted from DODODS to 939393 ．
For details，refer to the section where output functions Pra－17 are defined．

Pro－10

Reading Adjustment Type Selection
（ Default＝ 0 ）MODBUS ADDRESS：40011．

Parametric（one point）Reading Adjustment Encoder Type and Pitch value must be entered

Two Point Reading Adjustment
Min．Value for dual point adjustment value and Max．Value for dual point adjustment value must be entered．
000022
Multiplication－Division Coefficient Reading Adjustment Multiplication and Division Coefficient value must be entered．

Number of pulse of Encoder is used pulse.
NOTE-1 It can be adjusted from DODO

NOTE-1

NOTE-2
Encoder, manually brought to the lower point after that low point value is
entered for two point reading adjustment. It can be adjusted from -93993 to 999939.

NOTE-2
Min. Value for dual point adjustment value
(Default = 1000) MODBUS ADDRESS: LOW WORD = 40016,HIGH WORD $=40017$.
Encoder, manually brought to the upper point after that high point value is entered for two point reading adjustment. It can be adjusted from -93939 to 939939.

Multiplication Coefficient

(Default=01.0000)MODBUS ADDRESS: LOW WORD=40018,HIGH WORD= 40019.
It can be adjusted from 8 DODO to 999393 . Changes in this
NOTE-3
parameter is evaluated when counting starts.
If this value is IDODO Multiplication is not performed.

NOTE-3
Pitch
(Default=1000) MODBUS ADDRESS:40013.
Encoder's amount of progress on an round.
It can be adjusted from 000000 to $010000 \mathrm{~mm} / \mathrm{rnd}$.

Min. Value for dual point adjustment value
(Default=0) MODBUS ADDRESS: LOW WORD=40014,HIGH WORD=40015.

Division Coefficient
(Default=01.0000)MODBUS ADDRESS: LOW WORD=40020,HIGH WORD=40021. It can be adjusted from 0 DUSD to 939393 . Changes in this parameter is evaluated when counting starts.

If this value is \triangle DOD Division is not performed.

NOTE - 1 : Reading Adjustment Type Selection parameter Pro-in is 000000 , then these parameters can be accessed.

NOTE - 2 : Reading Adjustment Type Selection parameter Pro- in is 0 these parameters can be accessed.
 these parameters can be accessed.

Pro-17=000000

Manual Reset-0.
Device continues to count till manual reset is applied.

Counting direction : $0 \Rightarrow P$ (Upcount)
Pro-04 $=000000$

Device continues to count till manual reset is applied.
When Manual Reset happens, count value becomes Reset Offset value. Outputs are not active in this parameter.

Device continues to count till manual reset is applied.
When Manual Reset happens, count value becomes Reset Offset value. Outputs are not active in this parameter.

When count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-20 is 0 condition until manual reset input is active. If Output-1 pulse time
$\operatorname{Pro-2]}$ is not 0 , at the end of the pulse time Output-1 becomes inactive.
When count value reaches to SET2 value, Output-2 becomes active.
Counting continues over SET2 value.When Manual Reset happens, count value becomes Reset Offset value.
Output-2 pulse time Pro- PI is not considered.

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 Pulse Time Pro-20 is DODODC, Output-1 does not change condition until manual reset input is active. If Output-1 pulse time $\operatorname{Pro-20}$ is not 0 , Output-1 becomes inactive at the end of the pulse time. When actual value reaches to 0 DODOD, Output- 2 becomes
 happens, count value becomes Reset Offset value.
Output-2 pulse time $\left\lvert\, \begin{array}{ll}\text { Pa- ? }\end{array}\right.$ is not considered.

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is DODODD, Output-1 does not change position until manual reset input is active. If Output-1 pulse time $P_{r a-D D}$ is not 0 , Output- 1 becomes inactive at the end of the pulse time.
When the count value reaches to SET2 value, Output-2 becomes active. Counting does not continue over SET2 value. For starting to count manual reset input must be active.When Manual Reset happens, count value becomes Reset Offset value.
Output-2 Pulse Time Pro-? is not considered.
Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcounting) Pro-

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-20 is DODODD , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time Pra-2D is not 0 , Output-1 becomes inactive at the end of the pulse time.
When the count value reaches to 000000 value, Output-2 becomes active. Counting does not continue under ODODOD . For starting to count manual reset input must be active. When Manual Reset happens, count value becomes Reset Offset value.
Output-2 pulse time Pra-Z] is not considered.

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 Pulse Time Pro-20 is not 0 , Output-1 changes position at
 it changes position until Manual Reset input is active or according to Output-2.
When the count value reaches to SET2 value, Output-2 becomes active. Counting continues until manual reset input is active. If Output-2 Pulse Time Pro-Z] is not 0, Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.When Manual Reset happens, count value becomes Reset Offset value.

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-20 is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pro-2D is 0 it changes position until Manual Reset input is active or according to Output-2.
When count value reaches to $\triangle D O D O D$ value, Output-2 becomes active. Counting continues until manual reset input is active. If Output-2 Pulse time $P P_{r o-2]}$ is not 0 , Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.When Manual Reset happens, count value becomes Reset Offset value.

Pro-17=000004

Manual Reset-4.

Counting continues until Manual Reset input is active. Pulse times Pro- [D] and Pra-己] is not considered.

$$
\text { Counting direction : } \mathbf{0} \Rightarrow \mathbf{P} \text { (Upcount) Pro-04 }=000000
$$

When the count value reaches to SET1 value, Output-1 becomes active. Output-1 does not change position until manual reset input is active. Output-1 pulse time Pro-2D is not considered.
When the count value reaches to SET2 value, Output-2 becomes active. Output-2 does not change position until manual reset input is active. Output-2 pulse time $P_{r a-}$? is not considered. When Manual Reset happens, count value becomes Reset Offset value.

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-04 $=00001$

When the count value reaches to SET1 value, Output-1 becomes active. Output-1 does not change position until manual reset input is active. Output-1 pulse time $P_{r a}-20$ is not considered.
When the count value reaches to DODODD value, Output-2 becomes active. Output-2 does not change position until manual reset input is active. Output-2 pulse time $\mid P_{r o-2 \mid}$ is not considered. When Manual Reset happens, count value becomes Reset Offset value.

Pro-17=000005

Manual Reset-5.
Counting continues until Manual Reset input is active. Pulse times Pro- PD and $\operatorname{Pro-?~}$ is not considered.

$$
\text { Counting direction : } 0 \Rightarrow P \text { (Upcount) }
$$

When the count value reaches to SET1 value, Output-1 becomes active. Output-1 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-1 pulse time $P_{r a-}$ ID is not considered.
When the count value reaches to SET2 value,Output-2 becomes active. Output-2 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-1 pulse time $P_{r a-}$ I is not considered.

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-

When the count value reaches to SET1 value, Output-1 becomes active. Output-1 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-1 pulse time Pra-2D is not considered.
When the count value reaches to DODND active. Output-2 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-1 pulse time Pra-? is not considered.

Pro-17=000005
 Manual Reset-6.
 Counting continues until Manual Reset input is active. (Output-2 Pulse Time Pro-? is not considered)

Counting direction : $\mathbf{0} \Rightarrow P$ (Upcount)
Pro-04 $=000000$

When count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is DODODO , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time
Pro-2D is not 0 , at the end of the pulse time Output-1 becomes inactive.
When count value reaches to SET2 value,Output-2 becomes active.
Output-2 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-2 pulse time Pro-ट? is not considered.

When count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is DODDOD , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time

Pro-2D is not 0 , at the end of the pulse time Output- 1 becomes inactive.
When count value reaches to $\triangle D O D O D$ value, Output-2 becomes
Active.Output-2 does not change, condition until manual reset input is active or Count value becomes equal to Reset Offset value.
Output-2 pulse time $P_{r a-}$? is not considered.

Pro-17:000007

Manual Reset-7.
Counting continues until Manual Reset input is active.

When count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is DODODD , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time

Pro-2D is not 0, at the end of the pulse time Output-1 becomes inactive.
When count value reaches to SET2 value, Output-2 becomes active. If Output-2 pulse time Pro-2 is PDODOD , Output-2 does not change condition until manual reset input is active. If Output-2 pulse time
Pro-L? is not 0 , at the end of the pulse time Output-2 becomes inactive.

When count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is DODSDO , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time
Pro-20 is not 0 , at the end of the pulse time Output- 1 becomes inactive.
When count value reaches to 0 ODOD active. If Output-2 pulse time Pro-2] is 8000 DO , Output-2 does not change condition until manual reset input is active.If Output-2 pulse time $P r o-Z]$ is not 0 , at the end of the pulse time Output-2 becomes inactive.

$$
\text { Counting direction : } 0 \Rightarrow P \text { (Upcount) }
$$

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-2D is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pro-20 is 00000 D , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2 value, Output-2 becomes active. Count value is reset. If Output-2 pulse time Pro- ᄅ! is not 0 , Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-20 is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pro-20 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to ODODOD value, Output- 2 becomes active. Count value becomes equal to Set-2 value and counting is started again. If Output-2 pulse time Pro-टt is not 0 , Output-2 changes position at the end of the pulse time. In this case, if Output- 1 is active, it becomes inactive with Output-2.

Counting direction : $\mathbf{0} \Rightarrow \mathrm{P}$ (Upcount)
Pro-04 $=000000$

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pra-2D is not 0, Output-1 changes position at the end of the pulse time. If Output-1 Pulse Time Pra-20 is DODODO, it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active. Counting is stopped. If Output-2 pulse time Pro- ? is not 0 , count value is reset and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pro-20 is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pra-20 is 80 DODO, it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to ODOD value, Output- 2 becomes active. Counting is stopped. If Output-2 pulse time $P_{r-}-$? is not 0 , count value becomes equal to SET2 value, counting is started again and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.

When the count value reaches to SET1, Output-1 becomes active.If Output-1 pulse time $\operatorname{Pro-2D}$ is not 0 , Output-1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-20 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active and count value is reset.
When the count value reaches to SET2, Output-2 becomes active and count value is reset. But SET2 value is observed in actual value display. If Output-2 pulse time Pro-2 I is not 0 , count value is observed in actual value display and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pro-2D is not 0 , Output-1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-20 is ODODOD, it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to ODODOD value, Output-2 becomes active, count value becomes equal to SET2and counting continues. But OODODO Is observed in actual value display. If Output-2 pulse time Pro-Z Is not 0 , count value is observed in actual value screen and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Counting direction : $0 \Rightarrow P$ (Upcount)

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time $\operatorname{Pro-2D}$ is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-20 is 000005 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active and counting continues over 0 . If Output-2 pulse time Pro- ? is not 0 , count value is reset and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time $\operatorname{Pro}-2 D$ is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pra-2D is PDODOD , it changes position until Manual Reset input is active or according to Output-2 position.
When count value reaches to O DODO value, Output-2 becomes active and counting continues under 0 . If Output-2 pulse Pra-Z] time is not 0 , count value becomes equal to SET2 and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.

If count value is equal or greater than SET1 value, then Output-1 becomes active. Output-1 pulse time $P r a-2 D$ is not considered. If count value is equal or greater than SET2 value, then Output-2 becomes active. If count value is less than SET2 value, Output-2 becomes inactive. Output-2 pulse time $\operatorname{Pro-\sum 1}$ is not considered.

If count value is equal or less than SET1 value, then Output-1 becomes active. If it is greater than SET1 value, Output-1 becomes inactive. Output-1 pulse time Pro-2D is not considered.
If count value is equal or less than 0 OUODO value, then Output-2
 Output-2 becomes inactive. Output-2 pulse time Pro-? is not considered.
Ont

НППППM Count value is saved to memory when power is disconnected and restored on power up．

Count value is not saved to memory when power is disconnected．When power up DONOD is shown on the screen．

■ ■ ■ ■ ■ $\begin{aligned} & \text { Slave Address } \\ & \text {（Default＝1）MODBUS ADDRESS：40033．}\end{aligned}$
Device address for serial communication bus．
It can be adjusted from SODOD to 000247 ．
$\square \square \square-\square \begin{aligned} & \text { Communication Parity Selection } \\ & \text {（Default }=0 \text { ）MODBUS ADDRESS：40034．}\end{aligned}$
ППTRTR No parity．
ППППワ I Odd Parity．
ㄱロロワワコ Even Parity．
$\square \square \square-\square \square \begin{aligned} & \text { Baud Rate } \\ & \text {（Default }=1 \text { ）MODBUS ADDRESS：40035．}\end{aligned}$
FПGTRT 4800 Baud Rate．
ПППワワ 9600 Baud Rate．
ムワワワワコ 19200 Baud Rate．

$\square \square \square-\square \square \begin{aligned} & \text { Communication Stop Bit selection } \\ & (\text { Default }=0)\end{aligned}$

НПППП 2 Stop Bits．

Restore all settings to factory default. This parameter has a special password.

$\square \square \square-\square \square \quad \begin{aligned} & \text { Program Password } \\ & (\text { Default }=0 \text {) }) \text { MODBUS ADDRESS:40038. }\end{aligned}$

It is used for accessing to the program parameters. It can be adjusted from 000005 to 089993.
If it is 0000 D , there is no password protection while accessing to the parameters.
When programming button is pressed, Proit will appear on the display.
If program password is not " 0 " while accessing to the program parameters;
1- If user does not enter the PSuurd value correctly ; operation screen will appear without entering to operator parameters.

2- When P5uur din top display and DODOD in bottom display, if user presses ENTER button without entering password (for observing the parameters):
User can see all parameters except Program Password but device does not allow to do any changes with parameters.
(Please refer to Section 7. Failure Messages in EZM-4931 Programmable Counter (1))

6. Read Input Register Command

Input registers can not be changed by the user. Input registers can be only read.

Adres	Parameter Name	Range
30001	Preset Active Value Signed	$0-$ Positive / 1- Negative
30002	Preset Active Value High	$0-1$
30003	Preset Active Value Low	$0-65535$
30004	None	0
30005	None	0
30006	NPN / PNP Status	$0-$ NPN / 1 - PNP
30007	None	0
30008	Out1 Status	$0-$ Passive / 1 - Active
30009	Out2 Status	$0-$ Passive / 1-Active
30010	SSR1 Status	$0-$ Passive / 1 - Active
30011	SSR2 Status	$0-$ Passive / 1 - Active
30012	None	0
30013	Count Active Value High	$0-1$
30014	Count Active Value Low	$0-65535$
30015	Device Type \& Revision	$0-65535$
30016	Display Decimal Point	$0-4$
30017	Set Point-1 Value High	$0-1$
30018	Set Point-1 Value Low	$0-65535$
30019	Set Point-2 Value High	$0-1$
30020	Set Point-2 Value Low	$0-65535$

1-If the password is not $\triangle \mathcal{D C D O}$, user can access to the parameters without entering the password and by pressing ENTER button.
User can see all parameters except for programming password parameter Pro-PS but user can not do any changes in parameters. If password is entered for accessing to the parameters correctly, most significant digit of the parameter flashes. But if the password is not entered, flashing of the most significant digit is not realised.

2-If Actual Value is flashing;
It appears if any of the count value is greater than the maximum count value.
To remove this warning and reset the count value press RESET button.

$\mathrm{SET1}$
P $\mathrm{c} \begin{gathered}\mathrm{SET2} \\ \square\end{gathered} \square \square$

3-If Actual Value is flashing and counting is stopped ; It appears if any of the count value is lower than the minimum count value.
To remove this warning and reset the count value press RESET button.

Device Type
Housing \& Mounting
Protection Class
Weight
Environmental Ratings
: Programmable Counter.
: $96 \mathrm{~mm} \times 48 \mathrm{~mm} \times 86.5 \mathrm{~mm} 1 / 8$ DIN 43700 plastic housing. For panel mounting. Panel cut-out is $92 \times 46 \mathrm{~mm}$.
: NEMA 4X (IP65 at front, IP20 at rear).
: Approximately 0.29 Kg .
: Standard, indoor at an altitude of less than 2000 meters with none condensing humidity.
Storage / Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Storage / Operating Humidity : 90% max. (None condensing).
Installation
: Fixed installation.
Over Voltage Category
Pollution Degree
Operating Conditions
Supply Voltage and Power

Electrical Characteristics Of Digital Inputs

Maximum Input Frequency

Output Types
:-Relay Output on Resistive Load 5A@250V~. 100.000 operation (Full Load).

- SSR Driver Output.
(Max 10mA@5V =--).
Optional Communication Type
Communication Protocol
Process Display
: RS-232 Communication.
: MODBUS RTU.
: 13 mm Red 6 digit LED display.
Set Display $: 8 \mathrm{~mm}$ Green 6 digit LED display.
Led Indicators : SV1 (Set1 value), SV2 (Set2 value), O1 / 2 (Control Output) LEDs.
: GOST-R,C \mathcal{C}.

